Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
iScience ; 27(5): 109637, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646165

RESUMO

Carcinoembryonic antigen (CEA) is a critical biomarker for identifying colon cancer. This work presents an electrochemical impedance spectroscopy (EIS) based aptasensor for detecting CEA, utilizing a single-stranded DNA (ssDNA) aptamer previously selected and characterized by our research group. The surface of an interdigitated gold electrode (IDE) was successfully functionalized with an 18-HEG-modified aptamer sequence. The developed aptasensor demonstrated high specificity and sensitivity with detection limits of 2.4 pg/mL and 3.8 pg/mL for CEA in buffer and human serum samples, respectively. The optimal incubation time for the target protein was 20 min, and EIS measurements took less than 3 min. Atomic force microscopy (AFM) micrographs supported the EIS data, demonstrating a change in IDE surface roughness after each modification step, confirming the successful capture of the target. The potential of this developed EIS aptasensor in detecting CEA in complex samples holds promise.

2.
Sci Total Environ ; : 172510, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641119

RESUMO

Although complexation between dissolved organic matter (DOM) and ubiquitous Fe is known to have a major influence on electron transferring ability in redoximorphic soil, it was unclear whether and how this complexation affected nitrate reduction and N2O productivity. The nitrate reduction of paddy soil in the presence of crop residues returning under flooding conditions was explored in this study. The rate of nitrate reduction in control soil was 0.0677 d-1, while it improved 1.99 times in treatment soil with Chinese milk vetch (CMV) straw returning. During a 28-day incubation period, N2O productivity decreased 0.08-0.91 ppb in CMV soil and 0.43-0.50 ppb in rice straw soil compared with control. The presence of crop residue increased DOC content and Fe (III) reduction rate, which aided in the formation of Fe (II)-DOC complexation. Meanwhile, the addition of CMV increased the content of DOC by 5.14-78.77 mg/kg and HCl extractable Fe (II) by 35.12-1221.03 mg/kg. Crop residues returning to soil increased the relative abundance of iron reductive and electroactive genera, as well as denitrifying genera with more copies of denitrification genes (Archangiaceae, Gemmatimonadaceae, and Burkholderiaceae). The synergistic effect of Fe-DOC complexation, electroactive genera, and denitrifying genera contributed to up-regulated expression of napA and narG (5.84 × 106 and 3.39 × 107 copies increased in the CMV soil compared to the control) numbers and equally accelerated reduction of nitrate to nitrite, while further nitrite reduction was primarily attributed to the abiotic reaction by Fe (II). From a bio-electrochemical point of view, this work provided new insight into the nitrate reduction of paddy soil impacted by Fe-DOC complexation.

3.
Environ Monit Assess ; 196(4): 366, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483639

RESUMO

Bioelectrochemical sensors for environment monitoring have the potential to provide facility operators with real-time data, allowing for better and more timely decision-making regarding water and wastewater treatment. To assess the robustness and sensitivity of the Sentry™ biosensor in local conditions, it was tested in Malaysia using domestically available wastewater. The study objectives included (1) enrich the biosensor locally, (2) operate and test the biosensor with local domestic wastewater, and (3) determine the biosensor's responsiveness to model pollutants through pollutant spike and immersion test as well as response to absence of wastewater. Lab-scale operation shows the biosensor was successfully enriched with (1) local University Kebangsaan Malaysia's, microbial community strain collection and (2) local municipal wastewater microflora, operated for more than 50 days with a stable yet responsive carbon consumption rate (CCR) signal. Meanwhile, two independent biosensors were also enriched and operated in Indah Water Research Centre's crude sewage holding tank, showing a stable response to the wastewater. Next, a pilot scale setup was constructed to test the enriched biosensors for the spiked-pollutant test. The biosensors showed a proportional CCR response (pollutant presence detected) towards several organic compounds in the sewage, including ethanol, chicken blood, and dilution of tested sewage but less to curry powder, methanol, and isopropanol. Conversely, there was no significant response (pollutant presence not detected) towards hexane, Congo red, engine oil, and paint, which may be due to their non-biodegradability and/or insoluble nature. Additionally, the biosensors were exposed to air for 6 h to assess their robustness towards aerobic shock with a positive result. Overall, the study suggested that the biosensor could be a powerful monitoring tool, given its responsiveness towards organic compounds in sewage under normal conditions.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Esgotos/química , Eliminação de Resíduos Líquidos , Malásia , Monitoramento Ambiental , Água
4.
Sci Total Environ ; 924: 171042, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38369150

RESUMO

The emergence of COVID-19 caused by the coronavirus SARS-CoV-2 has prompted a global pandemic that requires continuous research and monitoring. This study presents a design of an electrochemical biosensing platform suitable for the evaluation of monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid (N) protein. Screen-printed carbon electrodes (SPCE) modified with gold nanostructures (AuNS) were applied to design a versatile and sensitive sensing platform. Electrochemical techniques, including electrochemical impedance spectroscopy (EIS) and square wave voltammetry (SWV), were used to investigate the interactions between immobilised recombinant N (rN) protein and several monoclonal antibodies (mAbs). The electrochemical characterisation of SPCE/AuNS/rN demonstrated a successful immobilisation of rN, enhancing the electron transfer kinetics. Affinity interactions between immobilised rN and four mAbs (mAb-4B3, mAb-4G6, mAb-12B2, and mAb-1G5) were explored. Although mAb-4B3 showed some non-linearity, the other monoclonal antibodies exhibited specific and well-defined interactions followed by the formation of an immune complex. The biosensing platform demonstrated high sensitivity in the linear range (LR) from 0.2 nM to 1 nM with limits of detection (LOD) ranging from 0.012 nM to 0.016 nM for mAb-4G6, mAb-12B2, and mAb-1G5 and limits of quantification (LOQ) values ranging from 0.035 nM to 0.139 nM, as determined by both EIS and SWV methods. These results highlight the system's potential for precise and selective detection of monoclonal antibodies specific to the rN. This electrochemical biosensing platform provides a promising route for the sensitive and accurate detection of monoclonal antibodies specific to the rN protein.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Monoclonais , Limite de Detecção , Técnicas Eletroquímicas/métodos , Carbono , Técnicas Biossensoriais/métodos , Eletrodos
5.
Molecules ; 29(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38398584

RESUMO

The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste. Electro-fermentation has gained great attention in the last few years due to its potential contribution to biofuel and biochemical production, e.g., hydrogen, methane, biopolymers, etc. Conventional fermentation processes pose several limitations in terms of their practical and economic feasibility. The introduction of two electrodes in a bioreactor allows the regulation of redox instabilities that occur in conventional fermentation, boosting the overall process towards a high biomass yield and enhanced product formation. In this regard, key parameters such as the type of culture, the nature of the electrodes as well as the operating conditions are crucial in order to maximize the production of biofuels and biochemicals via electro-fermentation technology. This article comprises a critical overview of the benefits and limitations of this emerging bio-electrochemical technology and its contribution to the circular economy.


Assuntos
Biocombustíveis , Reatores Biológicos , Humanos , Fermentação , Biomassa , Hidrogênio
6.
Biotechnol Lett ; 46(2): 213-221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38300444

RESUMO

OBJECTIVES: Evaluate electrochemically active biofilms as high energy density rechargeable microbial batteries toward providing persistent power in applications where traditional battery technology is limiting (, remote monitoring applications). RESULTS: Here we demonstrated that an electrochemically active biofilm was able to store and release electrical charge for alternating charge/discharge cycles of up to 24 h periodicity (50% duty cycle) with no significant decrease in average current density (0.16 ± 0.04 A/m2) for over 600 days. However, operation at 24 h periodicity for > 50 days resulted in a sharp decrease in the current to nearly zero. This current crash was recoverable by decreasing the periodicity. Overall, the coulombic efficiency remained near unity within experimental error (102 ± 3%) for all of the tested cycling periods. Electrochemical characterization here suggests that electron transfer occurs through multiple routes, likely a mixture of direct and mediated mechanisms. CONCLUSIONS: These results indicate that bidirectional electrogenic/electrotrophic biofilms are capable of efficient charge storage/release over a wide range of cycling frequency and may eventually enable development of sustainable, high energy density rechargeable batteries.


Assuntos
Fontes de Energia Bioelétrica , Transporte de Elétrons , Biofilmes , Eletricidade
7.
Heliyon ; 10(3): e25602, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38371963

RESUMO

The aim of this work was to develop an electrochemical approach for the analysis of DNA degradation and fragmentation in apoptotic cells. DNA damage is considered one of the major causes of human diseases. We analyzed the cleavage processes of the circular plasmid pTagGFP2-N and calf thymus DNA, which were exposed to restriction endonucleases (the restriction endonucleases BstMC I and AluB I and the nonspecific endonuclease I). Genomic DNA from the leukemia K562 cell line was used as a marker of the early and late (mature) stages of apoptosis. Registration of direct electrochemical oxidation of nucleobases of DNA molecules subjected to restriction endonuclease or apoptosis processes was proposed for the detection of these biochemical events. Label-free differential pulse voltammetry (DPV) has been used to measure endonuclease activities and DNA damage using carbon nanotube-modified electrodes. The present DPV technique provides a promising platform for high-throughput screening of DNA hydrolases and for registering the efficiency of apoptotic processes. DPV comparative analysis of the circular plasmid pTagGFP2-N in its native supercoiled state and plasmids restricted to 4 and 23 parts revealed significant differences in their electrochemical behavior. Electrochemical analysis was fully confirmed by means of traditional methods of DNA analysis and registration of apoptotic process, such as gel electrophoresis and flow cytometry.

8.
Angew Chem Int Ed Engl ; 63(6): e202312647, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018379

RESUMO

Cable bacteria are multicellular, filamentous bacteria that use internal conductive fibers to transfer electrons over centimeter distances from donors within anoxic sediment layers to oxygen at the surface. We extracted the fibers and used them as free-standing bio-based electrodes to investigate their electrocatalytic behavior. The fibers catalyzed the reversible interconversion of oxygen and water, and an electric current was running through the fibers even when the potential difference was generated solely by a gradient of oxygen concentration. Oxygen reduction as well as oxygen evolution were confirmed by optical measurements. Within living cable bacteria, oxygen reduction by direct electrocatalysis on the fibers and not by membrane-bound proteins readily explains exceptionally high cell-specific oxygen consumption rates observed in the oxic zone, while electrocatalytic water oxidation may provide oxygen to cells in the anoxic zone.


Assuntos
Sedimentos Geológicos , Sulfetos , Transporte de Elétrons , Sedimentos Geológicos/microbiologia , Sulfetos/metabolismo , Oxirredução , Bactérias/metabolismo , Oxigênio/metabolismo , Água/metabolismo , Eletrodos
9.
Microbiol Resour Announc ; 13(2): e0107923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132572

RESUMO

Geobacter sp. strain 60473 is an electrochemically active bacterium (EAB) isolated from mud taken from the shore of lake Suwa in Japan. Here, we report the complete genome sequence of strain 60473, which helps deepen our understanding of common and strain-specific genomic features of EAB affiliated with the genus Geobacter.

10.
Proc Natl Acad Sci U S A ; 121(1): e2310288120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154062

RESUMO

Cytochrome c oxidase deficiency (COXD) is an inherited disorder characterized by the absence or mutation in the genes encoding for the cytochrome c oxidase protein (COX). COX deficiency results in severe muscle weakness, heart, liver, and kidney disorders, as well as brain damage in infants and adolescents, leading to death in many cases. With no cure for this disorder, finding an efficient, inexpensive, and early means of diagnosis is essential to minimize symptoms and long-term disabilities. Furthermore, muscle biopsy, the traditional detection method, is invasive, expensive, and time-consuming. This study demonstrates the applicability of scanning electrochemical microscopy to quantify COX activity in living human fibroblast cells. Taking advantage of the interaction between the redox mediator N, N, N', N'-tetramethyl-para-phenylene-diamine, and COX, the enzymatic activity was successfully quantified by monitoring current changes using a platinum microelectrode and determining the apparent heterogeneous rate constant k0 using numerical modeling. This study provides a foundation for developing a diagnostic method for detecting COXD in infants, which has the potential to increase treatment effectiveness and improve the quality of life of affected individuals.


Assuntos
Deficiência de Citocromo-c Oxidase , Lactente , Humanos , Adolescente , Deficiência de Citocromo-c Oxidase/genética , Microscopia Eletroquímica de Varredura , Qualidade de Vida , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo
11.
Enzyme Microb Technol ; 174: 110369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101243

RESUMO

The entrance of some toxic and hazardous chemical agents such as antibiotics, pesticides, and herbicides into the environment can cause various problems to human health and the environment. In recent years, researchers have considered the use of electrostimulation in the processes of microbial metabolism and biological systems for the treatment of pollutants in the environment. Although several electrostimulation reports have been presented for pollutant removal, little attention has been paid to alternative current (AC) biostimulation. This study presents a systematic review of microbial electrostimulation using bioelectrochemical systems supplied with AC. The utilization of alternating current bioelectrochemical systems (ACBESs) has some advantages such as the provide of appropriate active biofilms in the electrodes due to the cyclical nature of the current and energy transfer in an appropriate manner on the electrode surfaces. Moreover, the ACBESs can reduce hydraulic time (HRT) under optimal conditions and reduce the cost of converting electricity using AC. In microbial electrostimulation, amplitude (AMPL), waveform, C/N, and current have a significant effect on increasing the removal efficiency of the pollutants. The obtained results of the meta-analysis illustrated that various pollutants such as phenol, antibiotics, and nitrate have been removed in an acceptable range of 96% using the ACBESs. Therefore, microbial electrostimulation using AC is a promising technology for the decomposition and removal of various pollutants. Moreover, the ACBESs could provide new opportunities for promoting various bioelectrochemical systems (BESs) for the production of hydrogen or methane.


Assuntos
Fontes de Energia Bioelétrica , Terapia por Estimulação Elétrica , Poluentes Ambientais , Humanos , Eletricidade , Poluição Ambiental , Antibacterianos , Eletrodos
12.
Biochemistry (Mosc) ; 88(10): 1645-1657, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105030

RESUMO

Cytochromes P450 are a unique family of enzymes found in all Kingdoms of living organisms (animals, bacteria, plants, fungi, and archaea), whose main function is biotransformation of exogenous and endogenous compounds. The review discusses approaches to enhancing the efficiency of electrocatalysis by cytochromes P450 for their use in biotechnology and design of biosensors and describes main methods in the development of reconstituted and electrochemical catalytic systems based on the biochemical mechanism of cytochromes P450, as well as and modern trends for their practical application.


Assuntos
Técnicas Biossensoriais , Sistema Enzimático do Citocromo P-450 , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Reatores Biológicos , Biotecnologia , Biotransformação , Técnicas Biossensoriais/métodos
13.
Sci Total Environ ; 905: 167141, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37739072

RESUMO

Microbial electrolysis cell (MEC) is a promising in-situ strategy for chlorinated organic compound (COC) pollution remediation due to its high efficiency, low energy input, and long-term potential. Reductive dechlorination as the most critical step in COC degradation which takes place primarily in the cathode chamber of MECs is a complex biochemical process driven by the behavior of electrons. However, no information is currently available on the internal mechanism of MEC in dechlorination from the perspective of the whole electron transfer procedure and its dependent electrode materials. This review addresses the underlying mechanism of MEC on the fundamental of the generation (electron donor), transmission (transfer pathway), utilization (functional microbiota) and reception (electron acceptor) of electrons in dechlorination. In addition, the vital role of varied cathode materials involved in the entire electron transfer procedure during COC dechlorination is emphasized. Subsequently, suggestions for future research, including model construction, cathode material modification, and expanding the applicability of MECs to removal gaseous COCs have been proposed. This paper enriches the mechanism of COC degradation by MEC, and thus provides the theoretical support for the scale-up bioreactors for efficient COC removal.


Assuntos
Eletrólise , Recuperação e Remediação Ambiental , Eletrodos , Gases
14.
Polymers (Basel) ; 15(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765637

RESUMO

Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.

15.
BBA Adv ; 4: 100095, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424628

RESUMO

In this article, we cross-examine three well-established electrochemical approaches, namely cyclic voltammetry (CV), cyclic square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) to dissect the electron transfer (ET) rate of electrostatically immobilized cytochrome c on Ag electrodes. A detailed analysis supported by simulations of redox transition provided three distinct values for the heterogeneous electron transfer (HET) rate constant of cyt c interfaced on COOH-terminated C10-long alkanethiol, i.e., kHET= 47.8 (±2,91) s-1 in CV, kHET= 64.8 (±1,27) s-1 in SWV, and kHET= 26.5 s-1 in EIS. We discuss the obtained discrepancies obtained from electrochemical methods and compare them with the data from spectro-electrochemical experiments. A comprehensive selection list is created from which the most applicable approach can be chosen for studying proteins of interest. CV is most applicable to study the interfaced proteins exhibiting kHET of ca. 0.5 - 70 s-1, SWV is suitable for a broader range of kHET of 5 - 120 s-1 and EIS for kHET of 0.5 to 5 s-1 if alkanethiols are used as immobilization strategy.

16.
ACS Sens ; 8(8): 2921-2926, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431846

RESUMO

Despite several demonstrations of electrochemical devices with limits of detection (LOD) of 1 cell/mL, the implementation of single-cell bioelectrochemical sensor arrays has remained elusive due to the challenges of scaling up. In this study, we show that the recently introduced nanopillar array technology combined with redox-labeled aptamers targeting epithelial cell adhesion molecule (EpCAM) is perfectly suited for such implementation. Combining nanopillar arrays with microwells determined for single cell trapping directly on the sensor surface, single target cells are successfully detected and analyzed. This first implementation of a single-cell electrochemical aptasensor array, based on Brownian-fluctuating redox species, opens new opportunities for large-scale implementation and statistical analysis of early cancer diagnosis and cancer therapy in clinical settings.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
17.
Angew Chem Int Ed Engl ; 62(46): e202307780, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37428529

RESUMO

Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.


Assuntos
Eletricidade , Biocatálise
18.
Biosci Biotechnol Biochem ; 87(10): 1229-1235, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37475694

RESUMO

Studies have shown that the supplementation of anode-surrounding soil with zero-valent iron (ZVI) boosts power outputs from rice paddy-field microbial fuel cells (RP-MFCs). In order to understand mechanisms by which ZVI boosts outputs from RP-MFCs, the present study operated RP-MFCs with and without ZVI, and compositions of anode-associated bacteria and electrochemical properties of graphite anodes were analyzed after 3-month operation. Metabarcoding using 16S rRNA gene fragments showed that bacterial compositions did not largely differ among these RP-MFCs. Cyclic voltammetry showed improved electrochemical properties of anodes recovered from ZVI-supplemented RP-MFCs, and this was attributed to the adhesion of iron-oxide films onto graphite surfaces. Bioelectrochemical devices equipped with graphite anodes recovered from ZVI-supplemented RP-MFCs generated higher currents than those with fresh graphite anodes. These results suggest that ZVI is oxidized to iron oxides in paddy-field soil and adheres onto graphite anodes, resulting in the boost of power outputs from RP-MFCs.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Oryza , Fontes de Energia Bioelétrica/microbiologia , Grafite/química , Oryza/genética , Pós , RNA Ribossômico 16S/genética , Ferro , Bactérias/genética , Eletrodos , Solo
19.
Biosens Bioelectron ; 237: 115480, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379794

RESUMO

Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.


Assuntos
Técnicas Biossensoriais , Bactérias/genética , Engenharia Biomédica , Eletrodos , Monitoramento Ambiental , Técnicas Eletroquímicas
20.
Sci Total Environ ; 892: 164599, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37271387

RESUMO

Microbial fuel cell (MFC) is a variant of the bioelectrochemical system that uses microorganisms as biocatalysts to generate bioenergy by oxidizing organic matter. Due to its two-prong feature of simultaneously treating wastewater and generating electricity, it has drawn extensive interest by scientific communities around the world. However, the pollution purifying capacity and power production of MFC at the laboratory scale have tended to remain steady, and there have been no reports of a performance breakthrough. In recent years, research related to MFC has demonstrated a new trend, namely the coupling of MFC with other wastewater treatment technologies to create a 1 + 1 > 2 impact. MFC-based coupling/hybrid technologies such as sediment MFC (SMFC), constructed wetland MFC (CW-MFC), membrane bioreactor MFC (MBR-MFC), microbial desalination cell (MDC), and MFC coupled nutrient recovery technology, etc. have been increasingly studied. Therefore, this review aims to overview these already-emerging MFC coupling technologies and explores their development trends and challenges to serve as a guide for determining priority research topics in this area. Among these MFC-based coupling/hybrid technologies, literature seems to support that CW-MFC is a good example of integrated MFC technology where CWs are already employed at the field level for wastewater treatment application. MFC-Electroflocculation and MBR-MFCs are typical emerged hybrid systems to own promising potential. However, scalability and practical application potential of these integrated technologies are the challenge towards their reality except for ideal performance in small scale trials.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletrodos , Eletricidade , Águas Residuárias , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...